skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Conlon, J Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Some of the amphibian populations in Panama are demonstrating slow recovery decades after severe declines caused by the invasion of the fungal pathogenBatrachochytrium dendrobatidis(Bd). However, new species remain to be described and assessed for the mechanisms of disease resilience. We identified seven skin defense peptides from a presumably novel leopard frog species in the Tabasará range, at Buäbti (Llano Tugrí), Ngäbe-Buglé Comarca, and Santa Fe, Veraguas, Panama, herein called the Ngäbe-Buglé leopard frog. Two of the peptides were previously known: brevinin-1BLb fromRana (Lithobates) blairiand a previously hypothesized “ancestral” peptide, ranatuerin-2BPa. We hypothesized that the peptides are active againstBdand shape the microbiome such that the skin bacterial communities are more similar to those of other leopard frogs than of co-occurring host species. Natural mixtures of the collected skin peptides showed a minimum inhibitory concentration againstBdof 100 μg/ml, which was similar to that of other leopard frogs that have been tested. All sampled individuals hosted high intensity of infection withBd. We sampled nine other amphibian species in nearby habitats and found lower prevalence and intensities ofBdinfection. In addition to the pathogen load, the skin microbiomes were examined using 16S rRNA gene targeted amplicon sequencing. When compared to nine co-occurring amphibians, the Ngäbe-Buglé leopard frog had similar skin bacterial richness and anti-Bdfunction, but the skin microbiome structure differed significantly among species. The community composition of the bacterial skin communities was strongly associated with theBdinfection load. In contrast, the skin microbiome composition of the Ngäbe-Buglé leopard frog was similar to that of five North American leopard frog populations and the sympatric and congenericRana (Lithobates) warszewitschii, with 29 of the 46 core bacteria all demonstrating anti-Bdactivity in culture. Because of the highBdinfection load and prevalence in the Ngäbe-Buglé leopard frog, we suggest that treatment to reduce theBdload in this species might reduce the chytridiomycosis risk in the co-occurring amphibian community, but could potentially disrupt the evolution of skin defenses that provide a mechanism for disease resilience in this species. 
    more » « less
    Free, publicly-accessible full text available December 24, 2025